na_hex
Fit Function | \[\sigma_{p}^{hex, Na}(E) = 10^{-16} A_1 \Bigg[ \frac{e^{-\frac{A_2}{E}} \big(A_{12} + \ln(A_{11} + A_3E)\big)}{E} + A_4\frac{e^{-A_5E}}{(A_{13}E)^{A_6}} + A_7\frac{e^{-\frac{A_8}{E}}}{1 + (A_9E)^{A_{10}}} \Bigg]\] |
Comments | Python code requires NumPy imported as `np`. |
Arguments |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Return values |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Code | def na_hex(E, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13): """ This function calculates proton impact excitation cross sections (in cm2) of Na 3s to 5s. param E: requested electron-impact energy in keV/u type E: float, np.ndarray param Ai: fit coefficient type Ai: float """ sigma = A1*1e-16*((np.exp(-A2/E) * (A12 + np.log(A11 + A3*E)))/E + A4*np.exp(-A5*E)/(A13*E)**A6 + A7*np.exp(-A8/E)/(1 + (A9*E)**A10)) return sigma |