na_ein
Fit Function | \[\sigma_{e}^{ion, Na}(E) = \frac{10^{-13}A_7}{I_{nl}E}\Bigg[A_5 \ln\bigg( \frac{E}{I_{nl}} \bigg) + A_6 e^{-\frac{E}{I_{nl}}}+ \sum_{j=1}^{4}A_j\bigg(1-\frac{I_{nl}}{E}\bigg)^{j-1} \Bigg]\] |
Comments | Python code requires NumPy imported as `np`. |
Arguments |
|
||||||||||||||||||||||||||||||||||||||||
Return values |
|
||||||||||||||||||||||||||||||||||||||||
Code | def na_ein(E, A1, A2, A3, A4, A5, A6, A7, I): """ This function calculates electron impact ionization cross sections (in cm2) of Na 3s to 5s. param E: requested electron-impact energy in eV type E: float, np.ndarray param Ai: fit coefficient type Ai: float param I: ionization energy in eV type I: float """ sigma = A7*1e-13/(E*I) * (A5*np.log(E/I) + A6 * np.exp(-E/I) + A1*(1 - I/E)**0 + A2*(1 - I/E)**1 + A3*(1 - I/E)**2 + A4*(1 - I/E)**3) return sigma |