li_ein_schweinzer
Fit Function | \[\sigma_{e}^{ion}\big(E\big) = \frac{10^{-13}}{EI} \Bigg[ A_1\ln \bigg( \frac{E}{I} \bigg) + \sum_{j=2}^{6} A_j \bigg(1- \frac{I}{E} \bigg)^{j-1} \Bigg]\] |
Comments | Python code requires NumPy imported as `np`. |
Arguments |
|
||||||||||||||||||||||||||||||||||||
Return values |
|
||||||||||||||||||||||||||||||||||||
Code | def li_ein_schweinzer(E, A1, A2, A3, A4, A5, A6, I): """ This function calculates electron impact ionization cross sections (in cm2) of Li 2p to 3d. param E: requested electron-impact energy in eV type E: float, np.ndarray param Ai: fit coefficient type Ai: float param I: ionization energy in eV type I: float """ sigma = (A1*np.log(E/I) + A2*(1-I/E)**1 + A3*(1-I/E)**2 + A4*(1-I/E)**3 + A5*(1-I/E)**4 + A6*(1-I/E)**5) * 1e-13/(E * I) return sigma |