li_eex_schweinzer
Fit Function | \[\sigma_{e}^{exc}\big(E\big) = \frac{5.984 \times 10^{-16}}{E} \Bigg[\frac{E- I}{E} \Bigg]^{A_6} \times \Bigg[ \sum_{j=1}^{4}\frac{A_j}{(E/I)^{j-1}} + A_5\ln\bigg( \frac{E}{I} \bigg) \Bigg]\] |
Comments | Python code requires NumPy imported as `np`. |
Arguments |
|
||||||||||||||||||||||||||||||||||||
Return values |
|
||||||||||||||||||||||||||||||||||||
Code | def li_ein_schweinzer(E, A1, A2, A3, A4, A5, A6, I): """ This function calculates electron impact excitation cross sections (in cm2) of Li. param E: requested electron-impact energy in eV type E: float, np.ndarray param Ai: fit coefficient type Ai: float param I: threshold energy in eV type I: float """ sigma = 5.984e-16/E * ((E-I)/E)**A6 * (A1/((E/I)**0) + A2/((E/I)**1) + A3/((E/I)**2) + A4/((E/I)**3) + A5*np.log(E/I)) return sigma |