h_ein_johnson
Fit Function | \[\begin{align*} \sigma_{ion}^{n>3}(E) = 1.76 \times 10^{-16}\frac{IA_1^2}{E} \bigg(1 - e^{-\frac{A_2E}{I}} \bigg) \Bigg[A_3 \ln \bigg( \frac{E}{I} \bigg) \\ + \bigg(A_4 - A_3\ln\big(2A_1^2\big)\bigg) \bigg(1 - \frac{I}{E} \bigg)^2 \Bigg] \end{align*}\] |
Comments | Python code requires NumPy imported as `np`. |
Arguments |
|
||||||||||||||||||||||||||||
Return values |
|
||||||||||||||||||||||||||||
Code | def h_ein_johnson(E, A1, A2, A3, A4, I): """ This function calculates electron impact ionization cross sections (in cm2) of H n > 3. param E: requested electron-impact energy in eV type E: float, np.ndarray param Ai: fit coefficient type Ai: float param I: ionization energy in eV type I: float """ sigma = 1.76e-16*A1**2/(E/I)*(1-np.exp(-A2*E/I)) * (A3*np.log(E/I)+(A4-A3*np.log(2*A1**2)) * (1-1/(E/I))**2) return sigma |