Fit Function: JIONHE

Fit Function \[\sigma (pe) = 2.32 \times 10^{-16} \left(\frac{\text{Ry}}{\text{eion}}\right)^2 \left(\frac{\log(1.25 \beta u) (u - 1.0)}{u^2}\right)\]
Comments Python code requires NumPy imported as `np` as well as `warnings`. The values of `u`, `eion`, and `β` are specific to the code and should be referred to the source code for actual values and details.

Fortran

Arguments
namedescriptionunitstype(s)
pe electron energy eV real, dimension(:)
pcf coefficient data array real, dimension(9)
kncf number of coefficients in the data array integer
pxs cross section cm2 real, dimension(:)
kermsg error message character
Return values
namedescriptionunitstype(s)
pxs cross section cm2 real, dimension(:)
Code
c###################################################################
c
      subroutine heionen(n, l, mult, sumen, eion, kermsg)
c
c     this subroutine passes the ionization energy for excited states
c     of  helium taken from tables a.4 and a.5 given by janev et al.
c     (see doc=h-he-plasma.)
c
c     the input subroutine parameters are
c
c    n = principal quantum number of the excited electronic state
c
c    l = orbital angular momentum quantum number of the exited state
c
c    mult = the spin multiplicity (2s+1) of the state
c
c    sumen =  indicates choice of ionization energy to be returned.
c             if sumen=0  the ionization energy for the specific
c              state (quantified by n, l amd mult) is returned
c             if sumen=1  the ionization energy taken as an average
c             over angular momentum and toatal spin is returned
c
c     the output subroutine parameters are
c
c    eion = ionization energy
c
c    kermsg = blank if no errors
c
c     written by j. j. smith , iaea atomic and molecular data unit
c
c------------------------------------------------------------------------
c
      character*(*) kermsg
      integer n, l, mult, sumen, lp, multp
      dimension enl(4,4,2), en(7)
      data (((enl(i,j,k),i=1,4),j=1,4),k=1,2) /32*0.0/
c
c     data enl(1,1,1)
c    *    / 24.588 /,
c
c----   n=2 excited states
c
c    1  enl(2,1,1),enl(2,1,2),enl(2,2,1),enl(2,2,2)
c    *    / 3.973, 4.769, 3.371, 3.625 /,
c
c----   n=3 excited states
c
c    2   enl(3,1,1),enl(3,1,2),enl(3,2,1),enl(3,2,2),enl(3,3,1),
c    *   enl(3,3,2)
c    *    / 1.699, 1.871, 1.502, 1.582, 1.515, 1.515 /,
c
c----   n=4 excited states
c
c    3   enl(4,1,1),enl(4,1,2),enl(4,2,1),enl(4,2,2),enl(4,3,1),
c    *   enl(4,3,2),enl(4,4,1),enl(4,4,2)
c    *    / 0.9155, 0.9951, 0.8470, 0.8812, 0.8529, 0.8530, 0.8520,
c    *      0.8520 /
c
c-----   ionization energies summed over angular momentum and
c-----   total spin
c
      data (en(k),k=1,2) /2*0.0/
      data en(3),en(4),en(5),en(6),en(7)
     *    / 1.609 , 0.8811, 0.52, 0.37, 0.29/
c
      enl(1,1,1)=24.588
c----   n=2 excited states
      enl(2,1,1)=3.973
      enl(2,1,2)=4.769
      enl(2,2,1)=3.371
      enl(2,2,2)=3.625
c----   n=3 excited states
      enl(3,1,1)=1.699
      enl(3,1,2)=1.871
      enl(3,2,1)=1.502
      enl(3,2,2)=1.582
      enl(3,3,1)=1.515
      enl(3,3,2)=1.515
c----   n=4 excited states
      enl(4,1,1)=0.9155
      enl(4,1,2)=0.9951
      enl(4,2,1)=0.8470
      enl(4,2,2)=0.8812
      enl(4,3,1)=0.8529
      enl(4,3,2)=0.8530
      enl(4,4,1)=0.8520
      enl(4,4,2)=0.8520
      kermsg =' '
      if (sumen .eq. 1) then
        if (n .ge. 8) then
          eion =13.58/(n*n)
          return
        else
           eion =en(n)
           if (eion .eq. 0.0) kermsg =
     *        'ionization energy for n value not in table in heionen'
        endif
      else
           lp = l+1
           if (mult .eq. 1) then
             multp = 1
           else if (mult .eq. 3) then
               multp = 2
             else
                 kermsg = 'invalid spin multipclity as input in heionen'
             endif
           eion = enl(n,lp,multp)
           if (eion .eq. 0.0) kermsg =
     *        'ionization energy not in table in heionen'
      endif
      return
      end
c###################################################################

c###################################################################
c
      subroutine jionhe(pe, pcf, kncf, pxs, kermsg)
c
c     this is a subroutine to calculate cross sections (cm[2])
c     versus energy (ev) for electron impact ionization.
c     for details see doc=h-he-plasma , used for  reactions
c     2.3.10, 2.3.11 (see doc=h-he-plasma.)
c
c     pe = collision energy in ev
c
c     the coefficient data array passed should contain
c
c     pcf(1)  =  itrans,  integer which defines the type of transition.
c                 for transitions defined only in terms of the initial
c                 and final principal quantum numbers (n,m), itrans=1.
c                 for tranitions between (nl,ml') states itrans=2
c
c     pcf(2)  =  value of coefficient beta
c
c     pcf(3)  =  n, principal quantum number of initial state
c
c     if itrans = 2 the following coefficients are required
c
c     pcf(4) =   l, the orbital angular monentum of the inital state
c
c     pcf(5) =   mult, spin multiplicity (2s+1) of the inital state
c
c    - warning- .
c
c        the coefficient array pcf is updated by this routine to
c     include energy independent constants. these coefficients can be
c     used in subsequent calls for the same entry. the coefficeients
c     added are:
c
c     pcf(6) = eth, threshold ionization energy for the transition (ev)
c
c     kermsg = blank if no errors
c
c     pxs = cross section in cm[2]
c
c     update d. humbert, 12 March 2007 ---- parameters passed to heionen changed
c------------------------------------------------------------------------
c
      double precision pe, pcf, pxs
c
      integer  n, l, m, itrans
      dimension pcf(6)
      character*(*) kermsg
c
      data ry /1.358e+01/
c
      itrans = pcf(1)
      beta   = pcf(2)
      n  = pcf(3)
      if (itrans .eq. 2) then
        l   = pcf(4)
        m   = pcf(5)
      endif
c
      if (kncf .lt. 6) then
c
c        first call to jionhe determine energy independent
c        parameters and place in pcf for further use
c
c        determine ionization energy
c
        if (itrans .eq. 1) then
          call heionen(n, 0, 0, 1, eion, kermsg)
        else if (itrans .eq. 2) then
          call heionen(n, l, m, 0, eion, kermsg)
        else
            kermsg = 'invalid value of fisrt coefficientin jionhe'
            return
        endif
c
c        place energy independent parameters in coefficient array and
c        update kncf
c
        pcf(6) = eion
        kncf = 6
      else if (kncf .eq. 6) then
          eion =  pcf(6)
c
      else
          kermsg = ' incorrect number of coefficients passed to jionhe'
          return
      endif
c
      if(pe .lt. eion) then
        pxs=0.0
        return
      endif
c
c     determine the value of the cross section  pxs
c
      u = pe/eion
      pxs = 3.52e-16 * (ry/eion)**2 * 0.66 * (u - 1.0) *
     1               log(1.25 * beta * u) / (u * u)
c
      return
      end

Python

Arguments
namedescriptionunitstype(s)
pe electron energy eV float, np.ndarray
pcf coefficient data array float, np.ndarray
kncf number of coefficients in the data array int
Return values
namedescriptionunitstype(s)
pxs cross section cm2 float, np.ndarray
Code
def heionen(n, l, mult, sumen):
    """
    This function passes the ionization energy for excited states of helium 
    taken from tables a.4 and a.5 given by janev et al.
 
    n: principal quantum number of the excited electronic state
    l: orbital angular momentum quantum number of the exited state
    mult: the spin multiplicity (2s+1) of the state
    sumen: indicates choice of ionization energy to be returned.
    """
    enl = np.zeros((4, 4, 2))
    en = np.zeros(7)
    
    # Define the ionization energy values
    enl[0, 0, 0] = 24.588
    enl[1, 0, 0] = 3.973
    enl[1, 0, 1] = 4.769
    enl[1, 1, 0] = 3.371
    enl[1, 1, 1] = 3.625
    enl[2, 0, 0] = 1.699
    enl[2, 0, 1] = 1.871
    enl[2, 1, 0] = 1.502
    enl[2, 1, 1] = 1.582
    enl[2, 2, 0] = 1.515
    enl[2, 2, 1] = 1.515
    enl[3, 0, 0] = 0.9155
    enl[3, 0, 1] = 0.9951
    enl[3, 1, 0] = 0.8470
    enl[3, 1, 1] = 0.8812
    enl[3, 2, 0] = 0.8529
    enl[3, 2, 1] = 0.8530
    enl[3, 3, 0] = 0.8520
    enl[3, 3, 1] = 0.8520
    en[2:5] = [1.609, 0.8811, 0.52, 0.37, 0.29]
    
    eion = 0.0
    
    if sumen == 1:
        if n >= 8:
            eion = 13.58 / (n * n)
        else:
            try:
                eion = en[n - 1]
            except IndexError:
                raise ValueError('Ionization energy for n value not in table in heionen')
    else:
        lp = l + 1
        if mult == 1:
            multp = 1
        elif mult == 3:
            multp = 2
        else:
            raise ValueError('Invalid spin multiplicity as input in heionen')
        
        try:
            eion = enl[n - 1, lp - 1, multp - 1]
        except IndexError:
            raise ValueError('Ionization energy not in table in heionen')
    
    return eion

##############################################################

def jionhe(pe, pcf, kncf):
    """
    This is a function to calculate cross sections (cm^2) versus energy (eV)
    for electron impact ionization.
    
    pe: collision energy (eV)
    pcf: coefficient data array
    kncf: number of coefficients
    """
    
    ry = 13.58
    
    itrans = int(pcf[0])
    beta = pcf[1]
    n = int(pcf[2])
    
    l = None
    m = None
    if itrans == 2:
        l = int(pcf[3])
        m = int(pcf[4])

    # Initialize energy-independent parameter
    eion = 0.0

    if kncf < 6:
        # First call to jionhe determines energy-independent parameters
        # and places them in pcf for further use

        try:
            if itrans == 1:
                eion = heionen(n, 0, 0, 1)
            elif itrans == 2:
                eion = heionen(n, l, m, 0)
            else:
                raise ValueError("Invalid value of first coefficient in jionhe")
        except ValueError:
            raise ValueError("Error calculating ionization energy")

        # Place energy-independent parameters in the coefficient array and update kncf
        pcf[6] = eion
        kncf = 6

    elif kncf == 6:
        eion = pcf[6]
    else:
        raise ValueError("Incorrect number of coefficients passed to jionhe")

    if pe < eion:
        pxs = 0.0
    else:
        u = pe / eion
        pxs = 3.52e-16 * (ry / eion) ** 2 * 0.66 * (u - 1.0) * np.log(1.25 * beta * u) / (u * u)

    return pxs