Fit Function: JEEXC4

Fit Function \[\sigma (pe) = 3.52 \times 10^{-16} \; \text{pcf}(1) \left(\frac{pe}{\text{eth}} - 1.0\right) \left(\frac{\text{eth}}{pe}\right)^2\]
Comments Python code requires NumPy imported as `np`. The excitation energy `eth` should be referred to the source code for its actual values and further details.

Fortran

Arguments
namedescriptionunitstype(s)
pe electron energy eV real, dimension(:)
pcf coefficient data array real, dimension(9)
kncf number of coefficients in the data array integer
pxs cross section cm2 real, dimension(:)
kermsg error message character
Return values
namedescriptionunitstype(s)
pxs cross section cm2 real, dimension(:)
Code
c
c###################################################################
c
      subroutine heexcen(n, l, mult, sumen, eexc, kermsg)
c
c     this subroutine passes the excitation energy for excited states
c     of  helium taken from tables a.4 and a.5 given by janev et al.
c     (see doc=h-he-plasma.)
c
c     the input subroutine parameters are
c
c    n = principal quantum number of the excited electronic state
c
c    l = orbital angular momentum quantum number of the exited state
c
c    mult = the spin multiplicity (2s+1) of the state
c
c    sumen =  indicates choice of excitation enegy to be returned.
c             if sumen=0  the excitation energy for the specific
c              state (quantified by n, l amd mult) is returned
c             if sumen=1  the excitation energy taken as an average
c             over angular momentum and toatal spin is returned
c
c     the output subroutine parameters are
c
c    eexc = excitation energy
c
c    kermsg = blank if no errors
c
c     written by j. j. smith , iaea atomic and molecular data unit
c
c------------------------------------------------------------------------
c
      character*(*) kermsg
      integer n, l, mult, sumen, lp, multp
      dimension enl(4,4,2), en(7)
      data (((enl(i,j,k),i=1,4),j=1,4),k=1,2) /32*0.0/
c
c----   n=1 state
c
c     data enl(1,1,1)
c    *    / 24.588 /,
c
c----   n=2 excited states
c
c    1   enl(2,1,1),enl(2,1,2),enl(2,2,1),enl(2,2,2)
c    *    / 20.614, 19.818, 21.217, 20.963 /,
c
c----   n=3 excited states
c
c    2   enl(3,1,1),enl(3,1,2),enl(3,2,1),enl(3,2,2),enl(3,3,1),
c    *   enl(3,3,2)
c    *    / 22.919, 22.717, 23.086, 23.006, 23.073, 23.072 /,
c
c----   n=4 excited states
c
c    3   enl(4,1,1),enl(4,1,2),enl(4,2,1),enl(4,2,2),enl(4,3,1),
c    *   enl(4,3,2),enl(4,4,1),enl(4,4,2)
c    *    / 23.672, 23.529, 23.741, 23.706, 23.735, 23.735, 23.736,
c    *     23.736 /
c
c-----   excitation energies summed over angular momentum and
c-----   total spin
c
      enl(1,1,1)=24.588
c----   n=2 excited states
      enl(2,1,1)=20.614
      enl(2,1,2)=19.818
      enl(2,2,1)=21.217
      enl(2,2,2)=20.963
c----   n=3 excited states
      enl(3,1,1)=22.919
      enl(3,1,2)=22.717
      enl(3,2,1)=23.086
      enl(3,2,2)=23.006
      enl(3,3,1)=23.073
      enl(3,3,2)=23.072
c----   n=4 excited states
      enl(4,1,1)=23.672
      enl(4,1,2)=23.529
      enl(4,2,1)=23.741
      enl(4,2,2)=23.706
      enl(4,3,1)=23.735
      enl(4,3,2)=23.735
      enl(4,4,1)=23.736
      enl(4,4,2)=23.736
      data (en(k),k=1,2) /2*0.0/
      data en(3),en(4),en(5),en(6),en(7)
     *    / 22.9799 , 23.699, 24.07, 24.30, 24.71/
c
      kermsg =' '
      if (sumen .eq. 1 .or. n .gt. 4) then
        if (n .ge. 8) then
          eexc =enl(1,1,1) - 13.58/(n*n)
          return
        else
           eexc =en(n)
           if (eexc .eq. 0.0) kermsg =
     *        'excitation energy for n value not in table in heexcen'
        endif
      else
           lp = l+1
           if (mult .eq. 1) then
             multp = 1
           else if (mult .eq. 3) then
               multp = 2
             else
                 kermsg = 'invalid spin multipclity as input in heexcen'
             endif
           eexc = enl(n,lp,multp)
           if (eexc .eq. 0.0) kermsg =
     *        'excitation energy not in table in heexcen'
      endif
      return
      end
c##################################################################
c
c###################################################################
c
      subroutine jeexc4(pe, pcf, kncf, pxs, kermsg)
c
c     this is a subroutine to calculate cross sections (cm[2])
c     versus energy (ev) for electron impact excitation for dipole
c     forbidden transitions with spin change.
c     the formula is taken from doc=h-he-plasma reaction 2.3.4
c
c     pcf is the coefficient data array, where
c
c     pcf(1) =   coefficient q for the transition
c
c     pcf(2) =   lin, the orbital angular monentum of the inital state
c
c     pcf(3) =   multi, spin multiplicity (2s+1) of the inital state
c
c     pcf(4) =   lfin, the orbital angular monentum of the final state
c
c     pcf(5) =   multf, spin multiplicity (2s+1) of the final state
c
c    - warning- .
c
c        the coefficient array pcf is updated by this routine to
c     include energy independent constants. these coefficients can be
c     used in subsequent calls for the same entry. the coefficeients
c     added are:
c
c     pcf(6) = eth, threshold excitation energy for the transition (ev)
c
c     pe = electron energy (ev)
c
c     kermsg = blank if no errors
c
c     pxs = cross section in cm[2]
c
c------------------------------------------------------------------------
c
      double precision pe, pcf, pxs
c
      dimension pcf(6)
      integer lin, lfin, multi, multf
      character*(*) kermsg
c
      data ry /1.358e+01/
c
      q   = pcf(1)
      lin = pcf(2)
      multi = pcf(3)
      lfin = pcf(4)
      multf = pcf(5)
      kermsg = ' '
      if (kncf .eq. 5) then
c
c        first call to jeexc4 determine energy independent
c        parameters and place in pcf for further use
c
c        determine the threshold energy from the eneries of the initial
c        and final states
c
          call heexcen(2, lin, multi, 0, eexc1, kermsg)
          call heexcen(2, lfin, multf,0, eexc2, kermsg)
          eth = abs (eexc1 - eexc2)
c
c        place energy independent parameters in coefficient array and
c        update kncf
c
          pcf(6) = eth
          kncf = 6
      else if (kncf .eq. 6) then
          eth  = pcf(6)
c
      else
          kermsg = ' incorrect number of coefficients passed to jeexc4'
          return
      endif
c
      if (pe .lt. eth) then
        pxs  = 0.0
        return
      endif
c
      u = pe / eth
      pxs  = 3.52e-16 * q * (u - 1.0) / (u ** 2)
c
      return
c
      end

Python

Arguments
namedescriptionunitstype(s)
pe electron energy eV float, np.ndarray
pcf coefficient data array float, np.ndarray
kncf number of coefficients in the data array int
Return values
namedescriptionunitstype(s)
pxs cross section cm2 float, np.ndarray
Code
def heexcen(n, l, mult, sumen):
   """
    This function passes the excitation energy for excited states of  helium 
    taken from tables a.4 and a.5 given by janev et al. (Elementary processes in H-He plasmsas.
 
    n: principal quantum number of the excited electronic state
    l: orbital angular momentum quantum number of the exited state
    mul: the spin multiplicity (2s+1) of the state
    sumen: indicates choice of excitation enegy to be returned.
    """
    enl = np.zeros((4, 4, 2))
    en = np.zeros(7)
    
    # Define the excitation energy values
    enl[0, 0, 0] = 24.588
    enl[1, 0, 0] = 20.614
    enl[1, 0, 1] = 19.818
    enl[1, 1, 0] = 21.217
    enl[1, 1, 1] = 20.963
    enl[2, 0, 0] = 22.919
    enl[2, 0, 1] = 22.717
    enl[2, 1, 0] = 23.086
    enl[2, 1, 1] = 23.006
    enl[2, 2, 0] = 23.073
    enl[2, 2, 1] = 23.072
    enl[3, 0, 0] = 23.672
    enl[3, 0, 1] = 23.529
    enl[3, 1, 0] = 23.741
    enl[3, 1, 1] = 23.706
    enl[3, 2, 0] = 23.735
    enl[3, 2, 1] = 23.735
    enl[3, 3, 0] = 23.736
    enl[3, 3, 1] = 23.736
    en[2:5] = [22.9799, 23.699, 24.07, 24.30, 24.71]
    
    if sumen == 1 or n > 4:
        if n >= 8:
            eexc = enl[0, 0, 0] - 13.58 / (n * n)
        else:
            try:
                eexc = en[n - 1]
            except IndexError:
                raise ValueError('Excitation energy for n value not in table in heexcen')
    else:
        lp = l + 1
        if mult == 1:
            multp = 1
        elif mult == 3:
            multp = 2
        else:
            raise ValueError('Invalid spin multiplicity as input in heexcen')
        
        try:
            eexc = enl[n - 1, lp - 1, multp - 1]
        except IndexError:
            raise ValueError('Excitation energy not in table in heexcen')
    
    return eexc

###############################################################
def jeexc4(pe, pcf, kncf):
    """
    This is a function to calculate cross sections (cm^2) versus energy (eV)
    for electron impact excitation for dipole forbidden transitions with spin change.
    
    pe: electron energy (eV)
    pcf: coefficient data array
    kncf: number of coefficients
    """
    
    q = pcf[0]
    lin = pcf[1]
    multi = pcf[2]
    lfin = pcf[3]
    multf = pcf[4]

    ry = 13.58

    # Initialize energy-independent parameter
    eth = 0.0

    if kncf < 5:
        # First call to jeexc4 determines energy-independent parameters
        # and places them in pcf for further use

        try:
            eexc1 = heexcen(2, lin, multi, 0)
            eexc2 = heexcen(2, lfin, multf, 0)
            eth = abs(eexc1 - eexc2)
        except ValueError:
            raise ValueError("Error calculating threshold energy")

        # Place energy-independent parameters in the coefficient array and update kncf
        pcf[5] = eth
        kncf = 6

    elif kncf == 6:
        eth = pcf[5]
    else:
        raise ValueError("Incorrect number of coefficients passed to jeexc4")

    if pe < eth:
        pxs = 0.0
    else:
        u = pe / eth
        pxs = 3.52e-16 * q * (u - 1.0) / (u ** 2)

    return pxs